18V Operation 500mA Synchronous Step-Down DC/DC Converters

GENERAL DESCRIPTION

The XD9263/XD9264 series are synchronous step-down DC/DC converter ICs. The XD9263/64 series have operating voltage range of $3 \mathrm{~V} \sim 18 \mathrm{~V}$ and switching frequency is 2.2 MHz and it can support 500 mA as an output current with high-efficiency. Compatible with Low ESR capacitors such as ceramic capacitors for the output capacitor.
0.75 V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.0 V to 15.0 V using external resistors.
XD9263/XD9264 has a fixed internal Soft Start time which is 1.0 ms (TYP.), additionally the time can be extended by using an external resistor and capacitor.
UVLO and over current protection and short-circuit protection and thermal shutdown are embedded and they secure a safety operation. As an option, timer latch off over current protection (Integral Latch Method) can be selected.

aPPLICATIONS

- Automotive Body Control ECU
- Automotive Infotainment
- Automotive accessories
- Drive recorder
- Car-mounted camera
- ETC
- Industrial Equipment

FEATURES

Input Voltage Range
Output Voltage Range
FB Voltage
Oscillation Frequency
Output Current
Quiescent Current
Control Methods

Function

Protect Function
: 3.0V ~ 18.0V (Absolute Max 20V)
$1.0 \mathrm{~V} \sim 15.0 \mathrm{~V}$
: $\quad 0.75 \mathrm{~V} \pm 1.5 \%\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
: 2.2 MHz
500 mA
: $13.5 \mu \mathrm{~A}$
: PWM control (XD9263) PWM/PFM Auto (XD9264)
Efficiency 85\%@12V $\rightarrow 5 \mathrm{~V}, 300 \mathrm{~mA}$
: Soft-Start External settings Power Good (USP-6C Package only)
: Over Current Protection

- Automatic Recovery
(XD9263D/XD9264D)
- Integral Latch Method
(XD9263C/XD9264C)
UVLO
Thermal Shutdown
: Ceramic Capacitor
: $\quad-40^{\circ} \mathrm{C} \sim 105^{\circ} \mathrm{C}$
: SOT-25 (Without Power Good) USP-6C (With Power Good)
: EU RoHS Compliant, Pb Free

Output Capacitor
Operating Ambient Temperature
Package

Environmentally Friendly

PERFORMANCE CHARACTERISTICS

XD9263x75D/XD9264x75D
$\left(\mathrm{V}_{\mathrm{N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OuT }}=5 \mathrm{~V}\right.$)

*Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.

PRODUCT CLASSIFICATION

-Ordering Information

${ }^{(* 1)}$ The "-Q" suffix denotes "AEC-Q100" and "Halogen and Antimony free" as well as being fully EU RoHS compliant.

-Selection Guide

FUNCTION	C TYPE		D TYPE	
	SOT-25	USP-6C	SOT-25	USP-6C
Chip Enable	Yes	Yes	Yes	Yes
UVLO	Yes	Yes	Yes	Yes
Thermal Shutdown	Yes	Yes	Yes	Yes
Soft Start	Yes	Yes	Yes	Yes
Power-Good	-	Yes	-	Yes
Current Limiter (Automatic Recovery)	-	-	Yes	Yes
Current Limiter (Latch Protection $\left.{ }^{(²)}\right)$	Yes	Yes	-	-

[^0]
■PIN CONFIGURATION

* The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the GND (No. 2) pin.

■PIN ASSIGNMENT

PIN NUMBER		FIN NAME	FUNCTION
SOT-25	USP-6C		
1	6	VIN	Power Input
3	5	EN/SS	Enable Soft-Start
-	4	PG	Power-Good Output
4	3	FB	Output Voltage Sense
2	2	GND	Ground
5	1	Lx	Switching Output

FUNCTION CHART

PIN NAME	SIGNAL	STATUS
EN/SS	L	Stand-by
	H	Active
	OPEN	Undefined State ${ }^{\left({ }^{(1)}\right)}$

${ }^{(* 1)}$ Please do not leave the EN/SS pin open. Each should have a certain voltage.

PIN NAME	CONDITION		SIGNAL
PG	$E N / S S=H$	$\mathrm{V}_{\text {FB }}>\mathrm{V}_{\text {PGDET }}$	H (High impedance)
		$\mathrm{V}_{\mathrm{FB}} \leqq \mathrm{V}_{\text {PGDET }}$	L (Low impedance)
		Thermal Shutdown	L (Low impedance)
		UVLO ($\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {UVLOI }}$)	Undefined State
	$E N / S S=L$	Stand-by	L (Low impedance)

■ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS
Vin Pin Voltage		Vin	-0.3 ~ 20	V
EN/SS Pin Voltage		$V_{\text {ENSS }}$	-0.3 ~ 20	V
FB Pin Voltage		$V_{\text {Fb }}$	-0.3 ~ 6.2	V
PG Pin Voltage ${ }^{(* 1)}$		$V_{\text {PG }}$	-0.3 ~ 6.2	V
PG Pin Current ${ }^{*}{ }^{(1)}$		IPG	8	mA
Lx Pin Voltage		$V_{\text {Lx }}$	-0.3 ~ $\mathrm{V}_{\mathrm{IN}}+0.3$ or $20{ }^{\left({ }^{(2)}\right.}$	V
Lx Pin Current		ILx	1800	mA
Power Dissipation$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	SOT-25	Pd	760 (JESD51-7 Board) ${ }^{(* 3)}$	mW
	USP-6C		1250 (JESD51-7 Board) ${ }^{(* 3)}$	
Operating Ambient Temperature		Topr	-40~105	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	-55 ~ 125	${ }^{\circ} \mathrm{C}$

* All voltages are described based on the GND pin.
${ }^{\left({ }^{* 1}\right)}$ For the USP-6C Package only.
${ }^{(22)}$ The maximum value should be either $\mathrm{V}_{\operatorname{IN}}+0.3 \mathrm{~V}$ or 20 V in the lowest.
${ }^{\left({ }^{*} 3\right)}$ The power dissipation figure shown is PCB mounted and is for reference only.
The mounting condition is please refer to PACKAGING INFORMATION.

ELECTRICAL CHARACTERISTICS

XD9263/XD9264 Serie									$\mathrm{Ta}=25^{\circ} \mathrm{C}$
PARAMETER	SYMBOL	CONDITIONS			MIN.	TYP.	MAX.	UNIT	CIRCUIT
FB Voltage	$V_{\text {Fb }}$	$\mathrm{V}_{\mathrm{FB}}=0.731 \mathrm{~V} \rightarrow 0.769 \mathrm{~V}$ V_{FB} Voltage when Lx pin voltage changes from " H " level to "L" level		$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	0.739	0.750 0.750	0.761 0.769	V	(2)
Output Voltage Setting Range ${ }^{(* 1)}$	Voutset			$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	1.0	-	15.0	V	-
Operating Voltage Range	Vin			$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	3.0	-	18.0	V	-
UVLO Detect Voltage	Vuvlor	$\mathrm{V}_{\mathrm{IN}}=2.87 \mathrm{~V} \rightarrow 2.53 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.675 \mathrm{~V}$, VIN Voltage when Lx pin voltage changes from "H" level to "L" level		$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	2.60	2.70	2.80 2.87	V	(2)
UVLO Release Voltage	Vuvloz	$\mathrm{V}_{\mathrm{IN}}=2.63 \mathrm{~V} \rightarrow 2.97 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.675 \mathrm{~V}$ $\mathrm{V}_{\text {IN }}$ Voltage when Lx pin voltage changes from "L" level to "H" level		$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	2.70	2.80	2.90	V	(2)
Quiescent Current	$\mathrm{I}_{\text {a }}$	$\mathrm{V}_{\mathrm{FB}}=0.825 \mathrm{~V}$	XD9263			145	238	$\mu \mathrm{A}$	(4)
			XD9264		-	13.5	18.5		
				$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-	-	20.0		
Stand-by Current	Іятв	Ven/ss=0V			-	1.65	2.50	$\mu \mathrm{A}$	(5)
				$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-	-	2.80	$\mu \mathrm{A}$	(5)
Oscillation Frequency	fosc	Connected to external			2013	2200	2387	kHz	(1)
		$\text { lout }=100 \mathrm{~mA}$		$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	1813	-	2531		
Minimum Duty Cycle	$\mathrm{D}_{\text {min }}$	$\mathrm{V}_{\text {FB }}=0.825 \mathrm{~V}$		$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-	-	0	\%	(2)
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$	$\mathrm{V}_{\mathrm{FB}}=0.675 \mathrm{~V}$		$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	100	-	-	\%	(2)
Lx SW "H" On Resistance	RLxH	$\mathrm{V}_{\mathrm{FB}}=0.675 \mathrm{~V}, \mathrm{l}$ LX $=200 \mathrm{~mA}$		USP-6C	-	0.95	1.10	Ω	(2)
				SOT-25	-	0.99	1.14		
Lx SW "L" On Resistance	RLxL	$\mathrm{V}_{\mathrm{FB}}=0.825 \mathrm{~V}, \mathrm{l}$ Lx $=200 \mathrm{~mA}$		USP-6C	-	$0.69{ }^{(* 2)}$	-	Ω	(2)
				SOT-25	-	$0.73{ }^{(* 2)}$	-		
PFM Switch Current	IPFM	XD9264 only Connected to external components, lout $=1 \mathrm{~mA}$			-	370	-	mA	(1)
Highside Current Limit ${ }^{*}{ }^{*}$)	ІІım	$\mathrm{V}_{\mathrm{FB}}=0.675 \mathrm{~V}$			920	1100	-	mA	(2)
Latch Time	tlat	Type C only Connected to external components, $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$			0.5	1.0	1.7	ms	(6)
Internal Soft-Start Time	tss1	$\mathrm{V}_{\mathrm{EN} / \mathrm{SS}}=0 \mathrm{~V} \rightarrow 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.675 \mathrm{~V}$ Time until Lx pin oscillates			0.5	1.0	1.7	ms	(2)
External Soft-Start Time	tss2	$\begin{aligned} & \mathrm{V}_{\mathrm{EN} / \mathrm{SS}}=0 \mathrm{~V} \rightarrow 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.675 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{SS}}=430 \mathrm{k} \Omega, \mathrm{CSS}=0.47 \mu \mathrm{~F} \\ & \text { Time until Lx pin oscillates } \\ & \hline \end{aligned}$			17	26	35	ms	(3)

Test Condition: Unless otherwise stated, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{Ss}}=12 \mathrm{~V}$.
The ambient temperature range $\left(-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}\right)$ is design Value.
${ }^{\left({ }^{*}\right)}$ Please use within the range of $\mathrm{V}_{\text {Out }} / \mathrm{V}_{\mathbb{N}} \geqq 0.17$.
${ }^{(* 2)}$ Design reference value. This parameter is provided only for reference.
${ }^{(* 3)}$ Current limit denotes the level of detection at peak of coil current.

ELECTRICAL CHARACTERISTICS (Continued)

XD9263/XD9264 Series
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT	CIRCUIT
PG Detect Voltage ${ }^{(4)}$	$V_{\text {PGdet }}$	$\mathrm{V}_{\mathrm{FB}}=0.720 \mathrm{~V} \rightarrow 0.630 \mathrm{~V}$, $\mathrm{R}_{\mathrm{PG}}: 100 \mathrm{k} \Omega$ pull-up to 5 V $V_{F B}$ Voltage when PG pin voltage changes from "H" level to "L" level	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	0.638	0.675	0.712 0.720	V	(2)
PG Output Voltage ${ }^{(* 4)}$	$V_{P G}$	$\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}, \mathrm{IPG}^{\text {a }} 1 \mathrm{~mA}$	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-	-	0.3	V	(2)
Efficiency	EFFI (${ }^{(5)}$	Connected to external components Voutset=5V, lout $=300 \mathrm{~mA}$		-	$85{ }^{(* 2)}$	-	\%	(1)
FB "H" Current	Ifbe	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{EN} / \mathrm{SS}}=18 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{FB}}=3.0 \mathrm{~V} \end{aligned}$	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-0.1	0.0	0.1	$\mu \mathrm{A}$	(4)
FB "L" Current	IfbL	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN} / \mathrm{SS}}=18 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V} \end{aligned}$	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-0.1	0.0	0.1	$\mu \mathrm{A}$	(4)
EN/SS "H" Current	Ien/ssh	$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{EN} / \mathrm{S}}=18 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{FB}}=0.825 \mathrm{~V} \end{aligned}$	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-	0.1	0.3	$\mu \mathrm{A}$	(4)
EN/SS "L" Current	Ien/ssl	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{SS}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{FB}}=0.825 \mathrm{~V} \end{aligned}$	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	-0.1	0.0	0.1	$\mu \mathrm{A}$	(4)
EN/SS "H" Voltage	Ven/ssh	$\mathrm{V}_{\text {EN } / S S}=0.3 \mathrm{~V} \rightarrow 2.5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.71 \mathrm{~V}$ VEN/SS Voltage when Lx pin voltage changes from "L" level to "H" level	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	2.5	-	18.0	V	(2)
EN/SS "L" Voltage	Ven/ssl	$\mathrm{V}_{\text {EN } / S S}=2.5 \mathrm{~V} \rightarrow 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.71 \mathrm{~V}$ Ven/ss Voltage when Lx pin voltage changes from "H" level to "L" level	$-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}$	GND	-	0.3	V	(2)
Thermal Shutdown Temperature	TTSD	Junction Temperature		-	150	-	${ }^{\circ} \mathrm{C}$	-
Hysteresis Width	THYS	Junction Temperature		-	25	-	${ }^{\circ} \mathrm{C}$	-

Test Condition: Unless otherwise stated, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} / \mathrm{Ss}}=12 \mathrm{~V}$.
The ambient temperature range $\left(-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 105^{\circ} \mathrm{C}\right)$ is design Value.
${ }^{\left({ }^{* 1}\right)}$ Please use within the range of $\mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {IN }} \geqq 0.17 /$
${ }^{\left({ }^{*} 2\right)}$ Design reference value. This parameter is provided only for reference.
${ }^{(33)}$ Current limit denotes the level of detection at peak of coil current.
${ }^{(* 4)}$ For the USP-6C Package only.
${ }^{(* 5)}$ EFFI $=\{($ output voltage) \times (output current) $\} /\{$ (input voltage) \times (input current) $\} \times 100$

■TEST CIRCUITS

CIRCUIT(1)

CIRCUIT(2)

CIRCUIT(3)

* PG Pin is USP-6C Package only.

■TEST CIRCUITS (Continued)
CIRCUIT(4)

CIRCUIT(5)

CIRCUIT(6)

* PG Pin is USP-6C Package only.

■TYPICAL APPLICATION CIRCUIT / PARTS SELECTION METHOD

【Typical Examples】

	MANUFACTURER	PRODUCT NUMBER	VALUE
L	TDK	CLF6045NIT-2R2N-D	$2.2 \mu \mathrm{H}$
$\mathrm{CIN}^{\left({ }^{*} 1\right)}$	TDK	CGA4J3X7R1E225K125AB	$2.2 \mu \mathrm{~F} / 25 \mathrm{~V}$
$\mathrm{C}_{\mathrm{L}}{ }^{\left({ }^{*} 2\right)}$	Murata	GRT21BR71A106KE13	$10 \mu \mathrm{~F} / 10 \mathrm{~V} 2$ parallel
	TDK	CGA5L1X7R1C106K160AC	$10 \mu \mathrm{~F} / 16 \mathrm{~V} 2$ parallel
	Murata	GRT32DC81E106KE01	$10 \mu \mathrm{~F} / 25 \mathrm{~V} 2$ parallel

Select parts considering the DC bias characteristics and rated voltage of ceramic capacitors.
${ }^{\left({ }^{*}\right)}$ For $\mathrm{Cin}_{\mathrm{N}}$, use a capacitor with the same or higher effective capacity value as the recommended components.
${ }^{(}{ }^{* 2)}$ For C_{L}, use a capacitor with the same or higher effective capacity value as the recommended components. If a capacitor with a low effective capacity value is used, the output voltage may become unstable. However, if large capacity capacitors, such as electrolytic capacitors, are connected in parallel, the inrush current during startup could increase or the output could become unstable.

■TYPICAL APPLICATION CIRCUIT／PARTS SELECTION METHOD

＜Output voltage setting Value Voutset Setting＞
The output voltage can be set by adding an external dividing resistor．
The output voltage is determined by the equation below based on the values of $R_{F B 1}$ and $R_{\text {FB2 }}$ ．
$V_{\text {out }}=V_{F B \times} \times\left(R_{F B 1}+R_{F B 2}\right) / R_{F B 2}$
With $R_{F B 1}+R_{F B 2} \leqq 1 \mathrm{M} \Omega$
＜C $\mathrm{C}_{\text {FB }}$ setting＞
Adjust the value of the phase compensation speed－up capacitor $\mathrm{C}_{\text {FB }}$ using the equation below．

$$
C_{F B}=\frac{1}{2 \pi \times f_{z} f b \times R_{F B 1}}
$$

＊A target value for fzfb of about 5 kHz is optimum．

【Output voltage Setting Example】
To set output voltage to 5 V ．
When $R_{F B 1}=680 \mathrm{k} \Omega, R_{F B 2}=120 \mathrm{k} \Omega$ ，V outset $=0.75 \mathrm{~V} \times(680 \mathrm{k} \Omega+120 \mathrm{k} \Omega) / 120 \mathrm{k} \Omega=5.0 \mathrm{~V}$ ，
and fzfb is set to a target of 5 kHz using the above equation，
$C_{F B}=1 /(2 \times \pi \times 5 \mathrm{kHz} \times 680 \mathrm{k} \Omega)=46.8 \mathrm{pF}$ ．
＊The setting range for the output voltage is 1.0 V to 15.0 V ．
The condition $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }} \geqq 0.17$ must be satisfied．

【Setting Example】

Voutset	$\mathrm{R}_{\text {FB1 }}[\mathrm{k} \Omega]$	$\mathrm{R}_{\text {FB2 }}[\mathrm{k} \Omega]$	$\mathrm{C}_{\mathrm{FB}}[\mathrm{pF}]$
1.2	91	150	360
3.3	510	150	62
5.0	680	120	47
12	360	24	91

OPERATIONAL EXPLANATION

The XD9263/XD9264 series consist internally of a reference voltage supply with Soft Start function, a ramp wave circuit, an error amp, a PWM comparator, a High side driver FET, a Low side driver FET, a High side buffer circuit, a Low side buffer circuit, a current sense circuit, a phase compensation (Current feedback) circuit, a current limiting circuit, an under voltage lockout (UVLO) circuit, an internal power supply (Local Reg) circuit, a gate clamp (CLAMP) circuit and other elements.
The control method is the current mode control method for handling low ESR ceramic capacitors.

*Diodes inside the circuit are ESD protection diodes and parasitic diodes.

OPERATIONAL EXPLANATION(Continued)

< Normal Operation >

The standard voltage Vref and FB pin voltage are compared using an error amplifier and then the control signal to which phase compensation has been added to the error amplifier output is input to the PWM comparator. The PWM comparator compares the above control signal and lamp wave to control the duty width during PWM control. Continuously conducting these controls stabilizes the output voltage.
In addition, the current detecting circuit monitors the driver FET current for each switching and modulates the error amplifier output signal into a multiple feedback signal (current feedback circuit). This achieves stable feedback control even when low ESR capacitors, such as ceramic capacitors, are used to stabilize the output voltage.

XD9263 Series

The XD9263 Series (PWM control) performs switching at a set switching frequency fosc regardless of the output current. At light loads the on time is short and the circuit operates in discontinuous mode, and as the output current increases, the on time becomes longer and the circuit operates in continuous mode.

XD9263 Series: Example of light load operation

XD9263 Series: Example of heavy load operation

XD9264 Series

The XD9264 Series (PWM/PFM automatic switching control) lowers the switching frequency during light loads by turning on the High side driver FET when the coil current reaches the PFM current (IPFM). This operation reduces the loss during light loads and achieves high efficiency from light to heavy loads. As the output current increases, the switching frequency increases proportional to the output current, and when the switching frequency increases fosc, the circuit switches from PFM control to PWM control and the switching frequency becomes fixed.

< 100\% Duty Cycle Mode >
When the dropout voltage is low or there is a transient response, the circuit might change to the 100% Duty cycle mode where the High side driver FET is continuously on.
The 100% Duty cycle mode operation makes it possible to maintain the output current even when the dropout voltage is low such as when the input voltage declines due to cranking, etc.

OPERATIONAL EXPLANATION(Continued)

< CE Function >

When an "H" voltage ($\mathrm{V}_{\text {EN/SSH }}$) is input to the EN/SS pin, normal operation is performed after the output voltage is started up by the Soft Start function, normal operation is performed. When the "L" voltage ($V_{E N / S S L}$) is input to the EN/SS pin, the circuit enters the standby state, the supply current is suppressed to the standby current Istв (TYP. $1.65 \mu \mathrm{~A}$), and the High side driver FET and Low side driver FET are turned off.

< Soft Start Function >

This function gradually starts up the output voltage to suppress the inrush current.
The Soft Start time is the time until the output voltage from $V_{\text {EN/SSH }}$ reaches 90% of the output voltage set value, and when the output voltage increases further, the Soft Start function is cancelled to switch to normal operation.

Internal Soft Start Time

The internal Soft Start time (tsss^{1}) is configured so that after the "H" voltage ($\mathrm{V}_{\mathrm{EN} / \mathrm{SSH}}$) is input to the EN/SS pin, the standard voltage connected to the error amplifier increases linearly during the Soft Start period. This causes the output voltage to increase proportionally to the standard voltage increase. This operation suppresses the inrush current and smoothly increases the output voltage.

< Internal Soft Start EN/SS circuit >

< Overview of internal Soft Start >

External Setting Soft Start Time

The external setting Soft Start time (tssz) can adjust the increase speed of the standard voltage in the IC by adjusting the EN/SS pin voltage inclination during startup using externally connected component Rss and Css. This makes it possible to externally adjust the Soft Start time.

Soft Start time (tss2) is approximated by the equation below according to values of V1, Rss, and Css. When $\mathrm{t}_{\mathrm{ss} 2}$ is shorter than $\mathrm{t}_{\mathrm{ss} 1}$, the output voltage rises at the internal Soft Start time.

$$
\text { tss2=Css } \times \text { Rss } \times \ln (\mathrm{V} 1 /(\mathrm{V} 1-1.45 \mathrm{~V}))
$$

【Setting Example】

$\mathrm{C}_{\text {ss }}=0.47 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{ss}}=430 \mathrm{k} \Omega, \mathrm{V} 1=12 \mathrm{~V}$
tss2 $=0.47 \mu \mathrm{~F} \times 430 \mathrm{k} \Omega \times(\ln (12 \mathrm{~V} /(12 \mathrm{~V}-1.45 \mathrm{~V}))=26 \mathrm{~ms}$

■OPERATIONAL EXPLANATION (Continued)

< Power Good >
The output state can be monitored using the power good function. The PG pin is an Nch open drain output, therefore a pull-up resistor (approx. 100k Ω) must be connected to the PG pin.
The pull-up voltage should be 5.5 V or less. When not using the power good function, connect the PG terminal to GND or leave it open.

CONDITION		SIGNAL
$\mathrm{EN} / \mathrm{SS}=\mathrm{H}$	$\mathrm{V}_{\mathrm{FB}}>\mathrm{V}_{\text {PGDET }}$	H (High impedance)
	$\mathrm{V}_{\mathrm{FB}} \leqq \mathrm{V}_{\text {PGDET }}$	L (Low impedance)
	Thermal Shutdown	L (Low impedance)
	UVLO $\left(\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {UVLOD }}\right)$	Undefined State
$\mathrm{EN} / \mathrm{SS}=\mathrm{L}$	Stand-by	L (Low impedance)

< UVLO Function >

When the Vin pin voltage falls below VuvLod (TYP. 2.7V), the high side driver FET and low side driver FET are forcibly turned off to prevent false pulse output due to instable operation of the internal circuits. When the Vin pin voltage rises above VuvLor (TYP. 2.8 V), the UVLO function is released, the Soft Start function activates, and output start operation begins. Stopping by UVLO is not shutdown; only pulse output is stopped and the internal circuits continue to operate.
< Thermal Shutdown Function >
A thermal shutdown (TSD) function is built in for protection from overheating. When the junction temperature reaches the thermal shutdown detection temperature TTsD, the High side driver FET and Low side driver FET are compulsorily turned off.

If the driver FET continues in the off state, the junction temperature declines, and when the junction temperature falls to the thermal shutdown cancel temperature, the thermal shutdown function is cancelled and the Soft Start function operates to start up the output voltage.

OPERATIONAL EXPLANATION (Continued)

<Current limiting>
The current limiting circuit of the XD9263/XD9264 series monitor the current that flows through the High side driver transistor and Low side driver transistor, and when over-current is detected, the current limiting function activates.

(1) High side driver Tr. current limiting

The current in the High side driver Tr. is detected to equivalently monitor the peak value of the coil current. The High side driver Tr. current limiting function forcibly turns off the High side driver Tr. when the peak value of the coil current reaches the High side driver current limit value ІІімн.

High side driver Tr. current limit value lıImH=1.1A (TYP.)

(2) Low side driver Tr. current limiting

The current in the Low side driver Tr. is detected to equivalently monitor the bottom value of the coil current. The Low side driver Tr. current limiting function operates when the High side driver Tr. current limiting value reaches lıme. The Low side driver Tr. current limiting function prohibits the High side driver Tr. from turning on in an over current state where the bottom value of the coil current is higher than the Low side driver Tr. current limit value lıimL.

Low side driver Tr. current limit value $\mathrm{L}_{\text {LImL= }}=0.9 \mathrm{~A}$ (TYP.)
When the output current increases and reaches the current limit value, the current foldback circuit operates and lowers the output voltage and FB voltage. The ILIMH and ILIML decline accompanying the FB voltage decrease to restrict the output current.
When the overcurrent state is removed, the foldback circuit operation increases the lıIMH and llimL together with output voltage to return the output to the output voltage set value.
(3) Over current latch (Type C)

Type C turns off the High side and Low side driver Tr. when state (1) or (2) continues for $\mathrm{t}_{\text {LAT }}$ (TYP. 1.0ms). The Lx pin is latch stopped at the GND level (0V).
The latch stopped state only stops the pulse output from the Lx pin; the internal circuitry of the IC continues to operate. To restart after latch stopping, L level and then H level must be input into the EN/SS pin, or Vin pin re-input must be performed (after lowering the voltage below the UVLO detection voltage) to resume operation by Soft-Start.

The over current latch function may occasionally be released from the current limit detection state by the effects of ambient noise, and it may also happen that the latch time becomes longer or latching does not take place due to board conditions. For this reason, place the input capacitor as close as possible to the IC.
Type D is an automatic recovery type that performs the operation of (1) or (2) until the over current state is released.

NOTES ON USE

1) In the case of a temporary and transient voltage drop or voltage rise.

If the absolute maximum ratings are exceeded, the IC may be deteriorate or destroyed.

If a voltage exceeding the absolute maximum voltage is applied to the IC due to chattering caused by a mechanical switch or an external surge voltage, please use a protection element such as a TVS and a protection circuit as a countermeasure. Please see the countermeasures from (a) to (d) shown below.
(a) When voltage exceeding the absolute maximum ratings comes into the V_{IN} pin due to the transient change on the power line, there is a possibility that the IC breaks down in the end.
To prevent such a failure, please add a TVS between $\mathrm{V}_{\mathbb{I N}}$ and GND as a countermeasure.
(b) When the input voltage decreases below the output voltage, there is a possibility that an overcurrent will flow in the IC's Internal parasitic diode and exceed the absolute maximum rating of the Lx pin.
If the current is pulled into the input side by the low impedance between VIN and GND, then countermeasures, such as adding an SBD between $\mathrm{V}_{\text {Out }}$ and $\mathrm{V}_{\text {IN }}$, should be taken.
(c) When a negative voltage is applied to the input voltage by a reverse connection or chattering, an overcurrent could flow in the IC's parasitic diode and damage the IC. Take countermeasures, such as adding a reverse touching protection diode.
(d) When a sudden surge of electrical current travels along the Vout pin and GND due to a short-circuit, electrical resonance of a circuit involving parasitic inductor of cable related to short circuit and an output capacitor (C_{L}) and impedance such as Vout line generates a negative voltage exceeding the breakdown voltage and may damage the device.
Take countermeasures, such as connecting a schottky diode between the Vout and GND.

NOTES ON USE(Continued)

2) Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.
3) The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which components to select.
Be especially careful of the capacitor characteristics and use X7R or X5R (EIA standards) ceramic capacitors.
The capacitance decrease caused by the bias voltage may become large depending on the external size of the capacitor.
4) The current limit value is the coil current peak value when switching is not conducted.

The coil current peak value when the actual current limit function begins to operate may exceed the current limit of the electrical characteristics due to the effect of the propagation delay inside the circuit.
5) When the On time is less than the Minimum On Time (tonmin) and the dropout voltage is large or the load is low, the PWM control operates intermittently and the Vout ripple voltage may become large or the output voltage may become unstable.
6) The Vout ripple voltage could be increased when switching from discontinuous conduction mode to continuous conduction mode and when switching to 100% Duty cycle.
7) The PWM/PFM auto series may cause superimposed Vout ripple voltage by continuous pulses if used in high temperature and no load conditions. It is necessary to set an idle current of higher than $100 \mu \mathrm{~A}$ from Vout if used at no load. It can have the same effect as when $\mathrm{R}_{\mathrm{FB} 2}$ is lower than $7.5 \mathrm{k} \Omega$. Please refer to the < Output Voltage Setting Value Voutset Setting > section under TYPICAL APPLICATION CIRCUIT.
8) If the voltage at the EN/SS Pin does not start from $O V$ but it is at the midpoint potential when the power is switched on, the Soft Start function may not work properly and it may cause larger inrush current and bigger Vout ripple voltages.
9) The effects of ambient noise and the state of the circuit board may cause release from the current limiting state, and the latch time may lengthen or latch operation may not take place. Please evaluate IC well on customer's PCB.
10) Torex places an importance on improving our products and their reliability. We request that users incorporate fail safe designs and post aging protection treatment when using Torex products in their systems.

NOTES ON USE(Continued)

11) Instructions of pattern layouts.

The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the input capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ and the output capacitor (CL) as close to the IC as possible.
(1) In order to stabilize V_{IN} voltage level, we recommend that a by-pass capacitor ($\mathrm{C}_{\mathrm{IN} 1}$) be connected as close as possible to the $V_{I N}$ and GND pins.

(2) Please mount each external component as close to the IC as possible.

Please place the external parts on the same side of the PCB as the IC, not on the reverse side of the PCB and elsewhere.
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
(4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC.
(5) This product has a built in driver FET, which causes heat generation from the on resistance, so take measures to dissipate the heat when necessary.

XD9263/XD9264 Series

■NOTE ON USE (Continued)
<Reference Pattern Layout>
-USP-6C

Layer 1

Layer 3

Layer 2

Layer 4

-SOT-25

Layer 1

Layer 3

Layer 2

Layer 4

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Efficiency vs. Output current

XD9263x75D/XD9264x75D $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.3 \mathrm{~V}$)

(2) Output Voltage vs. Output Current

XD9263x75D/XD9264x75D
$\left(\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.3 \mathrm{~V}\right)$

(3) Ripple Voltage vs. Output Current

XD9263x75D/XD9264x75D $\left(\mathrm{V}_{\mathbb{I}}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}\right)$

XD9263x75D/XD9264x75D $\left(\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}\right)$
$\mathrm{L}=2.2 \mu \mathrm{H}$ (CLF6045NIT-2R2), $\mathrm{C}_{\mathbb{N}}=2.2 \mu \mathrm{~F}(\mathrm{GRT} 31 \mathrm{CC} 81 \mathrm{H} 225 \mathrm{KE} 01)$ $\mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2(\mathrm{GRT} 32 \mathrm{DC} 81 \mathrm{E} 106 \mathrm{KE} 01)$

(4) FB Voltage vs. Ambient Temperature

■TYPICAL PERFORMANCE CHARACTERISTICS(Continued)

(5) UVLO Voltage vs. Ambient Temperature

(7) Stand-by Current vs. Ambient Temperature

(9) Quiescent Current vs. Ambient Temperature

(6) Oscillation Frequency vs. Ambient Temperature

XD9263x75D/XD9264x75D

(8) Lx SW ON Resistance vs. Ambient Temperature

XD9263x75D/XD9264x75D

(10) Internal Soft-Start Time vs. Ambient Temperature

XD9263x75D/XD9264x75D

■TYPICAL PERFORMANCE CHARACTERISTICS(Continued)

(11) External Soft-Start Time vs. Ambient Temperature

XD9263x75D/XD9264x75D

(13) PG Detect Voltage vs. Ambient Temperature XD9263x75D/XD9264x75D

(12) PFM Switch Current vs. Ambient Temperature

XD9264x75D
($\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OuT }}=5 \mathrm{~V}$)

(14) PG Output Voltage vs. Ambient Temperature

XD9263x75D/XD9264x75D

(15) EN/SS Voltage vs. Ambient Temperature

■TYPICAL PERFORMANCE CHARACTERISTICS(Continued)

(16) $\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\text {OUT }}$ Operation Area

(17) Output Current Operation Area

TYPICAL PERFORMANCE CHARACTERISTICS(Continued)

(18) Load Transient Response

XD9263x75D
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \Leftrightarrow 300 \mathrm{~mA}$
$\mathrm{L}=2.2 \mu \mathrm{H}$ (CLF6045NIT-2R2N-D), $\mathrm{C}_{\mathbb{N}}=2.2 \mu \mathrm{~F}$ (CGA4J3X7R1E225K125AB), $\mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \times 2$ (CGA5L1X7R1C106K160AC)

(19) Input Transient Response

XD9263x75D
$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V} \Leftrightarrow 18 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, lout $=300 \mathrm{~mA}$

(20) EN/SS Rising Response

XD9263x75D

$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EN } / S S}=0 \mathrm{~V} \rightarrow 12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$

XD9264x75D
$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.0 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \Leftrightarrow 300 \mathrm{~mA}$
$\mathrm{L}=2.2 \mu \mathrm{H}$ (CLF6045NIT-2R2N-D), $\mathrm{C}_{\mathbb{N}}=2.2 \mu \mathrm{~F}$ (CGA4J3X7R1E225K125AB), $C_{L}=10 \mu F \times 2$ (CGA5L1X7R1C 106 K 160 AC)

XD9264x75D
$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V} \Leftrightarrow 18 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, lout $=300 \mathrm{~mA}$
$\mathrm{L}=2.2 \mu \mathrm{H}$ (CLF6045NIT-2R2N-D), $\mathrm{C}_{\mathbb{N}}=2.2 \mu \mathrm{~F}(\mathrm{CGA4J3X7R} 1 \mathrm{E} 225 \mathrm{~K} 125 \mathrm{AB}$), $C_{L}=10 \mu F \times 2$ (CGA5L1X7R1C 106 K 160 AC)

XD9264x75D
$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~V}_{\text {ENSS }}=0 \mathrm{~V} \rightarrow 12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$
$\mathrm{L}=2.2 \mu \mathrm{H}$ (CLF6045NIT-2R2N-D), $\mathrm{C}_{\mathbb{N}}=2.2 \mu \mathrm{~F}(\mathrm{CGA} 4 J 3 X 7 \mathrm{R} 1 \mathrm{E} 225 \mathrm{~K} 125 \mathrm{AB})$, $C_{L}=10 \mu \mathrm{~F} \times 2$ (CGA5L1X7R1C106K160AC)

| | | | | | | | $200 \mu \mathrm{~s} / \mathrm{div}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| | | | | | | | |
| $\mathrm{V}_{\text {ENSS }}=0 \mathrm{~V} \rightarrow 12 \mathrm{~V}$ | | | | $\mathrm{~V}_{\text {OUT }}: 2 \mathrm{~V} / \mathrm{div}$ | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages/

PACKAGE	OUTLIN / LAND PATTERN	THERMAL CHARACTERISTICS	
SOT-25	$\underline{\text { SOT-25 PKG }}$	JESD51-7 Board	SOT-25 Power Dissipation
USP-6C	$\underline{\text { USP-6C PKG }}$	JESD51-7 Board	$\underline{\text { USP-6C Power Dissipation }}$

MARKING RULE

- SOT-25 / USP-6C
(*) SOT-25 has a dot mark, which is printed under MARK (1) (refer to drawings below).
- SOT-25 (Under dot)

-USP-6C

(1)(2)(3)represents products series, products type, Oscillation Frequency

MARK			SERIES	TYPE	OSCILLATION FREQUENCY	PRODUCT SERIES
(1)	(2)	3			D	
L	4	1	XD9263	C	D	XD9263D75D**-Q
L	4	2	XD9263	D	D	XD9264C75D**-Q
L	4	3	XD9264	C	D	XD9264D75D*-Q
L	4	4	XD9264	D	D	

(4),(5) represents production lot number 01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order. (G, I, J, O, Q, W excluded)

* No character inversion used.

1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions, excluding when specified for in-vehicle use or other uses.
Do not use the product for in-vehicle use or other uses unless agreed by us in writing in advance.
5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
6. Our products are not designed to be Radiation-resistant.
7. Please use the product listed in this datasheet within the specified ranges.
8. We assume no responsibility for damage or loss due to abnormal use.
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.

[^0]: ${ }^{(2)}$ The over-current protection latch is an integral latch type.

